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Abstract: 

The electrification of transportation is rapidly increasing, with 

city buses presenting significant potential for sustainable 

mobility. However, a deep understanding of real-world driving 

data is crucial for optimizing vehicle design and fleet 

operations. By leveraging powerful machine learning methods, 

five different algorithms were developed and rigorously 

evaluated in terms of prediction accuracy, robustness, and 

overall applicability. The efficiency of alternative powertrains 

depends on multiple technological factors, yet uncertainty in 

energy demand often leads to conservative designs, resulting in 

inefficiency and high costs. Due to the complexity and 

interrelation of parameters, both industry and academia lack 

analytical solutions to address this challenge effectively. This 

paper aims to enhance transparency in the energy economy of 

battery electric buses (BEBs) by introducing novel explanatory 

variables to characterize speed profiles. By leveraging powerful 

machine learning methods, five different algorithms were 

developed and rigorously evaluated in terms of prediction 

accuracy, robustness, and overall applicability. The best-

performing model achieved over 94% accuracy, demonstrating 

the effectiveness of advanced predictive techniques combined 

with a sophisticated selection of features. The proposed 

methodology offers immense potential for manufacturers, fleet 

operators, and urban planners by enabling precise energy 

demand prediction, reducing operational costs, and improving 

efficiency. Ultimately, this research contributes to the 

transformation of public transportation towards a more 

sustainable and data-driven future. 
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1.INTRODUCTION 

Traffic causes approximately 25% of greenhouse gas (GHG) 

emissions in Europe, and this percentage is increasing. 

Therefore, widespread electrification of the mobility sector is 

one of the most positive actions that can be taken in relation to 

climate change and sustainability . It seems clear that electric 

buses, because of their low pollutant emissions, are set to play 

a key role in the public urban transportation of the future. 

Although the initial investment in electrification may be high - 

e.g. purchase costs of BEBs are up to twice as high as those of 

Diesel buses it is quickly amortized. downside, the battery 

charging time of an electric bus is significantly longer than the 

refuelling time of a diesel bus, while the opposite is true for the  

 

range. Ultimately, widespread electrification of the mobility 

sector is one of the most positive actions that can be taken in 

terms of climate change and sustainability, but more research is 

needed to ensure efficient operation, as it also poses significant  

 

challenges. The starting point for this study was a problem 

proposed by Seville’s public bus operator. 

In addition, electrification of the power train brings many other 

advantages, such as a reduced noise level or pollution. On the 

In short, they wanted to replace their diesel fleet with all-

electric vehicles, but first they had to size the vehicles’ batteries 

and determine the best charging locations around the city. In 

practice, this means using computers to predict consumption on 

each route. Unfortunately, this can currently only be done with 

complex physical models that require long simulation times, or 

with data-driven models that are less computationally intensive 

once trained, but require numerous driving, mechanical, and 

road measurements as inputs (see Section I-A). This is where 

the present research comes in. In this paper we use the bus 

operator’s database and a physics-based model of soon-to be- 

deployed electric buses to develop data-driven models that 

predict the energy requirements of the vehicles. Amongst 

others, what distinguishes our contribution from previous data 

driven approaches is the small number of physical variables 

involved: we show that, to accurately predict the consumption 

on a route using machine learning, we only need to know the 

instantaneous speed of the vehicle and the number of 

passengers on the bus.   

2. LITERATURE SURVEY 

The electric vehicle (EV) industry has witnessed rapid growth 

over the past decade, with electric buses playing a crucial role 

in transforming urban public transport systems worldwide. 

One of the most significant areas of research in this field is 

optimizing energy usage, especially for electric buses. These 

buses are becoming the backbone of many cities’ public 

transportation fleets, contributing to the reduction of carbon 

emissions and the promotion of cleaner urban mobility. 

However, for electric buses to become a truly sustainable 

option, there is a pressing need to optimize their energy 

consumption. Several studies have explored how machine 

learning, data analysis, and innovative technologies can be 

harnessed to improve the energy economy of these buses, 

ultimately making them more efficient, cost-effective, and 

sustainable in real-world conditions.  

Roman Michael Sennefelder’s 2024 study offers a major 

contribution to this area by incorporating machine learning 

algorithms to predict the energy consumption of battery 

electric buses. His approach is particularly groundbreaking 

because it integrates a wide range of variables that were 

previously overlooked in traditional models. In addition to the 

usual factors like bus speed and route length, Sennefelder’s 

model also takes into account weather conditions, driving 

patterns, and the specific topography of the bus routes. Each 
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of these factors can have a significant impact on energy 

consumption. For example, driving on a hilly route demands 

more energy than on a flat route, and adverse weather 

conditions, like heavy rain or cold temperatures, can increase 

energy usage as the bus needs more power to maintain speed 

or heat the interior. By incorporating these variables, 

Sennefelder’s model achieved a remarkable prediction 

accuracy of over 94%. This high level of precision is essential 

for making real-time decisions about energy consumption and 

improving fleet management.  

Sennefelder’s work is valuable not just because of the high 

prediction accuracy, but also because it offers deeper 

insights into the factors that influence energy usage. These 

insights can be used to improve operational strategies for 

electric bus fleets. For instance, by analyzing the weather 

data alongside bus performance, transit authorities can 

anticipate energy demand and adjust routes or schedules 

accordingly. Buses can be optimized to operate more 

efficiently in adverse weather conditions, and specific routes 

that require higher energy consumption can be managed 

better through scheduling or vehicle allocation. This 

approach makes the transition to electric buses more viable, 

as it allows for the effective management of energy 

resources and reduces operating costs. Building on 

Sennefelder’s work, Dimitar Trifonov’s 2023 paper focuses 

on enhancing the precision of energy prediction models for 

electric buses. Trifonov emphasizes that to achieve more 

reliable predictions, it is necessary to incorporate additional 

features that reflect the complexities of real-world bus 

operations. One such feature is bus load, which refers to the 

number of passengers onboard. As the number of passengers 

increases, so does the total mass of the bus, requiring more 

energy to accelerate and maintain speed. Trifonov also 

highlights the importance of including passenger numbers, 

route-specific factors, and other dynamic conditions in the 

energy prediction models. These factors are especially 

important in urban environments, where routes may involve 

varying traffic patterns, stops, and turns.   

3. PROPOSED METHODOLOGY 

The proposed system aims to optimize the energy consumption 

and operational efficiency of electric city buses by leveraging 

data-driven insights through machine learning (ML). This 

system will predict energy needs, optimize routes, manage 

charging schedules, and enhance fleet management, all with 

the goal of reducing costs, improving sustainability, and 

enhancing operational efficiency. The system will be 

integrated into the existing urban infrastructure and will use 

real-time and historical data to provide actionable insights. 

System Overview: 

The proposed system is designed to use machine learning 

models and data from electric buses to predict energy 

consumption, optimize fleet operations, and improve charging 

infrastructure. The system will include data collection, 

preprocessing, predictive modelling, and optimization layers, 

which work together to provide real-time, actionable insights 

for bus operators. Key functionalities of the system include 

Energy Consumption Prediction: Using historical and real-

time data to predict how much energy each bus will consume 

on a given route. Route Optimization: Finding the most 

energy-efficient routes for buses, considering factors like 

traffic, terrain, and weather. Charging Optimization: 

Optimizing the charging schedule for buses to ensure 

maximum efficiency, reduce downtime, and minimize 

electricity costs. Maintenance Prediction: Predicting the need 

for maintenance and identifying anomalies in energy 

consumption, such as battery degradation. 

System Architecture and Components: 

The architecture of the proposed system involves several key 

layers that enable data collection, processing, prediction, and 

optimization Proposed System Workflow: 

Unlike traditional systems, the proposed solution continuously 

collects and analyses real-time cybersecurity discussions and 

reports. The system identifies emerging threats as they are 

being discussed in hacker forums, dark web platforms, and 

social media, allowing for faster detection and response. By 

categorizing threats using frameworks like MITRE ATT&CK, 

the system enhances situational awareness.  

Key Benefits of the Proposed System 

The system categorizes identified threats based on their 

severity, attack pattern, and potential impact. It uses AI-driven 

classification models to assign risk levels to each detected 

cyber threat, enabling security professionals to prioritize their 

mitigation efforts efficiently. 

Energy Efficiency: By predicting energy consumption and 

optimizing routes, the system reduces unnecessary energy 

usage, contributing to significant cost savings. 

 Reduced Operational Costs: Optimized charging schedules 

and fleet operations reduce downtime and energy costs, 

making electric buses more cost-effective to operate. 

Extended Battery Life: Predictive maintenance ensures that 

buses are serviced before issues occur, and optimized charging 

prevents overcharging, extending battery life.  

Sustainability: The system helps reduce the carbon footprint 

of public transport by ensuring that electric buses operate more 

efficiently and integrate renewable energy sources during off 

peak hours. 

Improved Fleet Management: The system provides 

actionable insights into the performance of individual buses, 

helping fleet managers improve operational efficiency and 

decision-making.   

Future Enhancements and Considerations 

Integration with Smart City Infrastructure: The system could 

be integrated with broader smart city technologies (e.g., smart 

traffic lights, autonomous vehicles) to further optimize urban 

transportation networks. Advanced Autonomous Features: As 

autonomous electric buses become more widespread, machine 

learning models could be adapted to optimize autonomous 

driving behaviors, further improving energy efficiency. 

 

 

4. EXPERIMENTAL ANALYSIS 

 

Figure 1: Home page 
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The Home Page serves as the main entry point of the platform, 

providing users with a clear and intuitive interface to navigate 

between different sections. It features a welcoming design 

with essential navigation options, prominently displaying 

buttons or links directing users to the Service Provider Login 

and User Login pages. The homepage typically includes a brief 

introduction to the platform’s purpose, highlighting its key 

features and benefits. A responsive and user-friendly layout 

ensures accessibility across various devices, enhancing the 

overall user experience. With clear call-to-action elements, the 

homepage streamlines access to the respective login portals, 

allowing both service providers and users to proceed 

seamlessly. 

  

Figure 2: Landing page  

The image depicts a login page for the system. There is a login 

section with a circular "Login" button that features a padlock 

icon, symbolizing security. The login form includes fields for 

"User Name" and "Password," along with a "sign_in" button, 

suggesting restricted access for authorized users.  

 

 

Figure 3: Web page for the service provider login 

There is a login section labeled "Login Service Provider" in 

red text, which includes a circular login button with a padlock 

icon, symbolizing security and restricted access. Below the 

button, there are input fields for "User Name" and 

"Password," along with a "Login" button, indicating that only 

authorized users can access the system.  

 

Figure 4: User Registration Page 

A User Registration Page is an essential feature of web 

applications, allowing users to create accounts by providing 

details like name, email, phone number, and password. It 

includes form validation to ensure correct input formats, such 

as strong passwords and valid email addresses, enhancing 

security and usability. Secure password handling is crucial, 

often involving encryption techniques like crypt hashing to 

protect user data from breaches. Many registration systems 

also incorporate email verification or OTP authentication 

to confirm user identity before granting access. Additionally, 

integrating a database such as MySQL, PostgreSQL, or 

MongoDB ensures that user information is stored securely, 

enabling seamless login and authentication processes 

 

5. CONCLUSION 

This paper offers a data-driven approach that uses both 

simulated and real-world data for planning problems and 

electrification of public transport. The results confirm that the 

energetic relevant features obtained by feature selection and 

regression analysis perfectly characterize the energy 

consumption of BEBs under different real driving conditions. It 

is a practical approach for fleet operators who want to retrofit 

or replace their conventional buses with electric vehicles and 

build the corresponding infrastructure. We emphasize in this 

context the so-called ‘‘Vehicle Routing Problem’’. The energy 

demand on each route needs to be known a priori to correctly 

size the batteries, decide on the optimal bus operating modes 

(all-electric, hybrid electric, et cetera), and select the best 

charging strategies (i.e. opportunity vs. conventional charging). 

The worst-case scenario – the most energy-intensive route – is 

the limiting factor. Ultimately, this knowledge is essential for 

fleet operators to identify critical operational limits in advance, 

avoid potential showstoppers, and gain confidence in new 

technologies. Thus, to achieve reliable and affordable service 

on all routes in the end. As our main contribution, the paper 

presents a novel selection of explanatory variables that combine 

time and frequency characteristics of the speed waveform. To 

extract these features, the route is divided into micro trips. This 

‘segment-based’ prediction provides robustness against non-

stationarity. Starting with an initial set of 40 features, we have 

found a minimum number of characteristics with high 

predictive value. The most relevant of these features, i.e., the 

spectral entropy of velocity profiles, has so far even gone 

unnoticed in this field. This result confirms our assumption that 

it is in the velocity waveform, whose temporal structure is well 

captured by the spectral entropy, where the most essential 

information actually resides. 
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